
EPERL(1) Ralf S. Engelschall EPERL(1)

NAME
ePerl − Embedded Perl 5 Language

SYNOPSIS
eperl [−d name=value] [−D name=value] [−B begin_delimiter] [−E end_delimiter] [−i] [−m mode] [−o

outputfile] [−k] [−I directory] [−P] [−C] [−L] [−x] [−T] [−w] [−c] [inputfile]

eperl −r|−l|−v|−V

DESCRIPTION
Abstract

ePerl interprets a text file sprinkled with Perl 5 program statements by evaluating the Perl 5 code while
copying the plain text data verbatim. It can operate in various ways: As a stand-alone Unix filter or
integrated Perl 5 module for general file generation tasks and as a powerful Webserver scripting
language for dynamic HTML page programming.

Introduction

The eperl program is the Embedded Perl 5 Language interpreter. This really is a full-featured Perl 5
interpreter, but with a different calling environment and source file layout than the default Perl
interpreter (perl). It is designed for general text file generation with the philosophy of embedding the
Perl 5 program code into the data instead of the usual way where you embed the data into a Perl 5
program (usually by quoting the data and using them via print statements). So, instead of writing a
plain Perl script like

#!/usr/bin/perl
print "foo bar\n";
print "baz quux\n";
for ($i = 0; $i < 10; $i++) { print "foo #${i}\n"; }
print "foo bar\n";
print "baz quux\n";

you can write it now as an ePerl script:

#!/usr/bin/eperl
foo bar
baz quux
<: for ($i = 0; $i < 10; $i++) { print "foo #${i}\n"; } :>
foo bar
baz quux

Although the ePerl variant has a different source file layout, the semantic is the same, i.e. both scripts
create exactly the same resulting data on STDOUT.

Intent

ePerl is simply glue code which combines the programming power of the Perl 5 interpreter library with
an embedding trick: it converts the source file into a valid Perl script which then gets entirely evaluated
by only one internal instance of the Perl 5 interpreter. To achieve this, ePerl translates all plain code
into (escaped) Perl 5 strings placed into print constructs while passing through all embedded native
Perl 5 code. This amounts to the same operation as one would do when writing a plain Perl generation
script.

Due to the nature of such sprinkled code, ePerl is really the better approach when the generated text
contains really more static than dynamic data. Or in other words: Use ePerl if you want to keep the most

of the generated text data in plain format while just programming some sprinkled stuff. Do not use it
when generating pure dynamic data. There it brings no advantage to the ordinary program code of a
plain Perl script. So, the static part should be at least 60% or the advantage becomes a disadvantage.

ePerl in its origin was actually designed for an extreme situation: as a webserver scripting-language for
on-the-fly HTML page generation. Here you have the typical case that usually 90% of the data consists
of pure static HTML tags and plain text while just the remaining 10% are programming constructs
which dynamically generate more markup code. This is the reason why ePerl beside its standard Unix
filtering runtime-mode also supports the CGI/1.1 and NPH−CGI/1.1 interfaces.

Embedded Perl Syntax

Practically you can put any valid Perl constructs inside the ePerl blocks the used Perl 5 interpreter
library can evaluate. But there are some important points you should always remember and never forget

ossp-eperl 2.2.15 2024-10-19 1

EPERL(1) Ralf S. Engelschall EPERL(1)

when using ePerl:

1. Delimiters are always discarded.

Trivially to say, but should be mentioned at least once. The ePerl block delimiters are always
discarded and are only necessary for ePerl to recognize the embedded Perl constructs. They are
never copied to the final output.

2. Generated content has to go to STDOUT.

Although you can define subroutines, calculate some data, etc. inside ePerl blocks, only data
which is explicitly written to the STDOUT filehandle is expanded. In other words: When an ePerl
block does not generate content on STDOUT, it is entirely replaced by an empty string in the final
output. But when content is generated it is put at the point of the ePerl block in the final output.
Usually content is generated via pure print constructs which implicitly use STDOUT when no
filehandle is given.

3. Generated content on STDERR always leads to an error.

Whenever content is generated on the STDERR filehandle, ePerl displays an error (including the
STDERR content). Use this to exit on errors while passing errors from ePerl blocks to the calling
environment.

4. Last semicolon.

Because of point 6 (below) and the fact that most of the users don’t hav e the internal ePerl block
translations in mind, ePerl is smart about the last semicolon. Usually every Perl block has to end
with the semicolon of the last command.

<: cmd; ...; cmd; :>

But when the last semicolon is missing it is automatically added by ePerl, i.e.

<: cmd; ...; cmd :>

is also correct syntax. But sometimes it is necessary to force ePerl not to add the semicolon. Then
you can add a _ (underscore) as the last non-whitespace character in the block to force ePerl to
leave the final semicolon. Use this for constructs like the following

<: if (...) { _:>
foo
<: } else { _:>
bar
<: } :>

where you want to spread a Perl directive over more ePerl blocks.

5. Shorthand for print−only blocks.

Because most of the time ePerl is used just to interpolate variables, e.g.

<: print $VARIABLE; :>

it is useful to provide a shortcut for this kind of constructs. So ePerl provides a shortcut via the
character =. When it immediately (no whitespaces allowed here) follows the begin delimiter of an
ePerl block, a print statement is implicitly generated, i.e. the above block is equivalent to

<:=$VARIABLE:>

6. Special end-of-line discard command for ePerl blocks.

ePerl provides a special discard command named // which discards all data up to and including
the following newline character when directly followed an end block delimiter. Usually when you
write

foo
<: $x = 1; :>
quux

the result is

foo

quux

ossp-eperl 2.2.15 2024-10-19 2

EPERL(1) Ralf S. Engelschall EPERL(1)

because ePerl always preserves code around ePerl blocks, even just newlines. But when you write

foo
<: $x = 1; :>//
quux

the result is

foo
quux

7. Restrictions in parsing.

Perl is a rich language, but a horrible one to parse. Perhaps you’ve heard "Only perl can parse
Perl". The implication of this is that ePerl never tries to parse the ePerl blocks itself. It entirely
relies on the Perl interpreter library, because it is the only instance which can do this without
errors. But the problem is that ePerl at least has to recognize the begin and end positions of those
ePerl blocks.

There are two ways: It can either look for the end delimiter while parsing, but at least recognize
quoted strings (where the end delimiter gets treated as pure data). Or it can just move forward to
the next end delimiter and say that it can not occur inside Perl constructs. In ePerl 2.0 the latter
was used, while in ePerl 2.1 the former was taken because a lot of users wanted it this way while
using bad end delimiters like >. But actually the author has again revised its opinion in ePerl 2.2
and decided to finally use latter approach. Because while the first one allows more trivial
delimiters (which itself is not a really good idea), it fails when constructs like m|"[ˆ"]+"| etc.
are used inside ePerl blocks. And it is easier to escape end delimiters inside Perl constructs (for
instance via backslashes in quoted strings) than rewrite complex Perl constructs to use even
numbers of quotes.

So, whenever your end delimiter also occurs inside Perl constructs you have to some-how escape
it.

8. HTML entity conversion.

Because one of ePerl’s usage is as a server-side scripting-language for HTML pages, there is a
common problem in conjunction with HTML editors. They cannot know ePerl blocks, so when
you enter those blocks inside the editors they usually encode some characters with the
corresponding HTML entities. The problem is that this encoding leads to invalid Perl code. ePerl
provides the −C option (q.v.) for decoding these entities to CP−1252, which is automatically
turned on in CGI modes.

Runtime Modes

ePerl can operate in three different runtime modes:

Stand-alone Unix filter mode

This is the default operation mode when used as a generation tool from the Unix shell or as a
batch-processing tool from within other programs or scripts:

$ eperl [options] − < inputfile > outputfile
$ eperl [options] inputfile > outputfile
$ eperl [options] −o outputfile − < inputfile
$ eperl [options] −o outputfile inputfile

As you can see, ePerl can be used in any combination of STDIO and external files. Additionally
there are two interesting variants of using this mode. First, you can put ePerl in the shebang to
implicitly select it as the interpreter for your script, similar to the way you are used to with the
plain Perl interpreter:

#!/usr/bin/eperl [options]
foo
<: print "bar"; :>
quux

Second, you can use ePerl in conjunction with the shell here-document technique from within
your shell programs:

ossp-eperl 2.2.15 2024-10-19 3

EPERL(1) Ralf S. Engelschall EPERL(1)

#!/bin/sh
...
eperl [options] − <<EOS
foo
<: print "quux"; :>
quux
EOS
...

If you need to generate shell or other scripts with ePerl, i.e. you need a shebang line in the output
of ePerl, you have to add a shebang line containing e.g. #!/usr/bin/eperl first, because
ePerl will strip the first line from the input if it is a shebang line. For example:

#!/usr/bin/eperl
#!/bin/sh
echo <: print "quux"; :>

will result in the following output:

#!/bin/sh
echo quux

Alternatively you can add a preprocessor comment in the first line:

#c This is a comment to preserve the shebang line in the following line
#!/bin/sh
echo <: print "quux"; :>

And finally you can use ePerl directly from within Perl programs by the use of the
Parse::ePerl (3) package (assuming that you have installed this also):

#!/path/to/perl
...
use Parse::ePerl;
...
$script = <<EOT;
foo
<: print "quux"; :>
quux
EOT
...
$result = Parse::ePerl::Expand({

Script => $script,
Result => \$result,

});
...
print $result;
...

See Parse::ePerl (3pm) for more details.

CGI/1.1 compliant interface mode

This is the runtime mode where ePerl uses the CGI/1.1 interface of a webserver when used as a
server-side scripting language. ePerl enters this mode automatically when the CGI/1.1
environment variable PATH_TRANSLATED is set and its or the scripts filename does not begin
with the NPH prefix "nph−". In this runtime mode it prefixes the resulting data with HTTP/1.0
(default) or HTTP/1.1 (if identified by the webserver) compliant response header lines.

ePerl also recognizes HTTP header lines at the beginning of the script’s generated data, for
instance you can generate your own HTTP headers with

ossp-eperl 2.2.15 2024-10-19 4

EPERL(1) Ralf S. Engelschall EPERL(1)

<? $url = "..";
print "Location: $url\n";
print "URI: $url\n\n"; !>

<html>
...

But notice that while you can output arbitrary headers, most webservers restrict the headers which
are accepted via the CGI/1.1 interface. Usually you can provide only a few specific HTTP headers
like Location or Status. If you need more control you have to use the NPH−CGI/1.1
interface mode.

The default HTTP status is "200 OK". If your script’s output starts with an HTTP status line
(HTTP/1.0 123 Description (or /1.1)), that line is used instead.

Additionally ePerl provides a useful feature in this mode: It can switch its UID/GID to the owner
of the script if the set-UID bit is set (see Security).

There are two commonly known ways of using this CGI/1.1 interface mode on the Web. First, you
can use it to explicitly transform plain HTML files into CGI/1.1 scripts with a shebang (see
above). For an Apache webserver, just put the following line as the first line of the file:

#!/usr/bin/eperl −mc

Then rename the script from file.html to file.cgi and set mark it executable:

$ mv file.html file.cgi
$ chmod a+rx file.cgi

Now make sure that Apache accepts file.cgi as a CGI program by enabling CGI support for the
directory where file.cgi resides. For this add the line

Options +ExecCGI

to the .htaccess file in this directory. Finally make sure that Apache really recognizes the extension
.cgi. Perhaps you additionally have to add the following line to your httpd.conf file:

AddHandler cgi−script .cgi

Now you can use file.cgi instead of file.html and take advantage of the achieved programming
capability by bristling file.cgi with your Perl blocks (or the transformation into a CGI script would
have been useless).

Alternatively (or even additionally) a webmaster can enable ePerl support in a more seamless way
by configuring ePerl as a real implicit server-side scripting language. This is done by assigning a
MIME-type to the various valid ePerl file extensions and forcing all files with this MIME-type to
be internally processed via the ePerl interpreter. You can accomplish this for Apache by adding the
following to your httpd.conf file

AddType application/x−httpd−eperl .phtml .eperl .epl
Action application/x−httpd−eperl /internal/cgi/eperl
ScriptAlias /internal/cgi /path/to/apache/cgi−bin

and creating a copy of the eperl program in your CGI-directory:

$ cp −p /usr/bin/eperl /path/to/apache/cgi−bin/eperl

Now all files with the extensions .phtml, .eperl and .epl are automatically processed by the ePerl
interpreter. There is no need for a shebang or any locally-enabled CGI mode.

One final hint: When you want to test your scripts offline, just run them with forced CGI/1.1 mode
from your shell. But make sure you prepare all environment variables your script depends on, like
QUERY_STRING or PATH_INFO:

$ export QUERY_STRING="key1=value1&key2=value2"
$ eperl −mc file.phtml

NPH−CGI/1.1 compliant interface mode

This runtime mode is a special variant of the CGI/1.1 interface mode, because most webservers
(e.g. Apache) provide it for special purposes. NPH stands for Non-Parsed-Header and is usually

ossp-eperl 2.2.15 2024-10-19 5

EPERL(1) Ralf S. Engelschall EPERL(1)

used by the webserver when the filename of the CGI program is prefixed with nph−. In this mode
the webserver does no processing on the HTTP response headers and no buffering of the resulting
data, i.e. the CGI program actually has to provide a complete HTTP response itself. The advantage
is that the program can generate arbitrary HTTP headers or MIME-encoded multi-block messages.

So, above we hav e renamed the file to file.cgi which restricted us a little bit. When we alternatively
rename file.html to nph−file.cgi and force the NPH−CGI/1.1 interface mode via option −mn then
this file becomes a NPH−CGI/1.1 compliant program under Apache and other webservers. Now
our script can provide its own HTTP response (it doesn’t need to, because ePerl provides a default
one if it is absent).

#!/path/to/bin/eperl −mn
<? print "HTTP/1.0 200 Ok\n";

print "X−MyHeader: Foo Bar Quux\n";
print "Content−type: text/html\n\n";

<html>
...

Expectedly, this can be also used with the implicit Server-Side Scripting Language technique. Put

AddType application/x−httpd−eperl .phtml .eperl .epl
Action application/x−httpd−eperl /internal/cgi/nph−eperl
ScriptAlias /internal/cgi /path/to/apache/cgi−bin

into your httpd.conf and run the command

$ cp −p /usr/bin/eperl /path/to/apache/cgi−bin/nph−eperl

from your shell. This is the preferred way of using ePerl as a Server-Side Scripting Language,

because it provides most flexibility.

Security

When you are installing ePerl as a CGI/1.1 or NPH−CGI/1.1 compliant program (see above for detailed
description of these modes) via

$ cp −p /usr/bin/eperl /path/to/apache/cgi−bin/eperl
$ chown root /path/to/apache/cgi−bin/eperl
$ chmod u+s /path/to/apache/cgi−bin/eperl

or

$ cp −p /usr/bin/eperl /path/to/apache/cgi−bin/nph−eperl
$ chown root /path/to/apache/cgi−bin/nph−eperl
$ chmod u+s /path/to/apache/cgi−bin/nph−eperl

i.e. with set-UID bit enabled for the root user, ePerl can switch to the UID/GID of the script’s owner.
Although this is a very useful feature for script programmers (because one no longer need to make
auxiliary files world-readable and temporary files world-writable!), it can be to risky for you when you
are paranoid about security of set-UID programs. If so, just don’t install ePerl set-UID! This is the
reason why ePerl is by default only installed as a stand-alone program which never needs this feature.

For those of us who decided that this feature is essential, ePerl tries really hard to make it secure. The
following steps have to be successfully passed before ePerl actually switches its UID/GID (in this
order):

1. The script has to match the following extensions: .html, .phtml, .eperl, .ephtml, .epl, .pl, .cgi

2. The UID of the calling process has to be a valid UID, i.e. it has to be found in passwd (5)
3. The UID of the calling process has to match the following users: nobody, root
4. The UID of the script owner has to be a valid UID, i.e. it has to be found in passwd (5)
5. The GID of the script group has to be a valid GID, i.e. it has to be found in group (5)
6. The script has to stay below the owner’s home directory

IF ANY ONE OF THOSE STEPS FAILS, NO UID/GID SWITCHING TAKES PLACE!.
Additionally (if DO_ON_FAILED_STEP was defined to STOP_AND_ERROR in eperl_security.h,
which is not the default) ePerl can totally stop processing and display its error page. This is for the
really paranoid webmasters. Per default when any step failed the UID/GID switching is just disabled,
but ePerl goes on with processing. Alternatively you can disable some steps at compile time. See

ossp-eperl 2.2.15 2024-10-19 6

EPERL(1) Ralf S. Engelschall EPERL(1)

eperl_security.h.

For security reasons, if the effective UID is that of root, the effectuve UID/GID is always reset to the

real UID/GID, regardless of the mode.

ePerl Preprocessor

ePerl provides its own preprocessor, similar to the C preprocessor, which is either enabled manually via
option −P, or automatically when ePerl runs in (NPH−)CGI mode. The following directives are
supported:

#include path

The contents of path, which can be either a relative or absolute path or a fully qualified HTTP
URL, are read and preprocessed recursively.

An absolute path is opened directly, relative paths are tried in the working directory and then in
directories given by −I. An HTTP URL is retrieved via a HTTP/1.0 request on the network, and
301/303 redirects are followed.

While ePerl strictly preserves the line numbers when removing sprinklings to yield the plain Perl
format, the preprocessor can’t do this for this directive. So, line numbers in error messages will be
wrong.

The security implications are obvious: This can run arbitrary code. You probably shouldn’t use
this if you don’t implicitly trust the reply. #sinclude is appropriate then.

#sinclude path

This is just like #include, but all delimiters are removed. Thus, path is reduced to only data,
and no code.

#if expr, #elsif expr, #else, #endif
These implement a C−preprocessor-style #if/#else/#endif construct, but expr is a Perl
expression evaluated at run-time. These are converted as follows (where BD/ED are the
delimiters):

#if expr → BD if (expr) { _ ED//
#elsif expr → BD } elsif (expr) { _ ED//
#else → BD } else { _ ED//
#endif → BD } _ ED//

#c Comment, discards everything up to and including the newline.

Provided Functionality

You can put really any Perl code into the ePerl blocks which are valid to the Perl interpreter ePerl was
linked with. ePerl does not provide any special functionality inside these ePerl blocks, because Perl is
already sophisticated enough ;−)

Because you can use any valid Perl code you can use all available Perl 5 modules, even those which use
shared objects. The Comprehensive Perl Archive Network <http://www.perl.com/perl/CPAN> provides
packages for use both from within plain Perl scripts and ePerl scripts. use name; works as-
expected.

OPTIONS
−d name=value

Sets a Perl variable in the package main which can be referenced via $name or more explicitly
via $main::name. This is equivalent to adding

<? $name = value; !>

to the beginning of inputfile. This option can occur more than once.

−D name=value

Sets environment variable name to value, which can be referenced via $ENV{'NAME'}. This is
equivalent to just running

$ name=value eperl ...

This option can occur more than once.

ossp-eperl 2.2.15 2024-10-19 7

EPERL(1) Ralf S. Engelschall EPERL(1)

−B begin_delimiter =item −E end_delimiter

Set the Perl block begin and end delimiter strings. Default delimiters are <? & !> for CGI modes
and <: & :> otherwise.

These may be of interest:

<: & :> (the default ePerl stand-alone filtering mode delimiters)
<? & !> (the default ePerl CGI interface mode delimiters)
<script language='ePerl'> & </script> (standard HTML scripting language
style)
<script type="text/eperl"> & </script> (forthcoming HTML3.2+ aka
Cougar style)
<eperl> & </eperl> (HTML-like style)
<!−−#eperl code=' & ' −−> (NeoScript and SSI style)
<? & > (PHP/FI style; but this no longer recommended because it can lead to parsing
problems. Should be used only for backward compatibility to old ePerl versions 1.x).

−i Forces the begin and end delimiters to be searched case-insensitively. Use this when you are using
delimiters like <ePerl>...</ePerl> or other more textual ones.

−m mode

Forces ePerl to act in a specific runtime mode: stand-alone filter (−mf), the CGI/1.1 interface
(−mc), or the NPH−CGI/1.1 interface (−mn).

−o outputfile

Write to outputfile instead of STDOUT (− specifies STDOUT explicitly.) This path is relative to
the directory containing inputfile in the CGI modes.

−k Don’t change the working directory. By default, ePerl will change to the directory containing
inputfile.

−x Output the internally created Perl script to the console (/dev/tty) before executing it.

−I directory

Specifies a directory which where #include and #sinclude files are searched, and which is
to be added to Perl @INC. This option can occur more than once.

−P Enable the special ePerl Preprocessor (see above). This option is enabled for all CGI modes
automatically.

−C This enables the HTML entity conversion for ePerl blocks. This option is automatically forced in
CGI modes.

The solved problem here is the following: When you use ePerl as a server-side-scripting-language
for HTML pages and you edit your ePerl source files via a HTML editor, it’s likely that it
translates some entered characters into HTML entities, like < to <. This leads to invalid Perl
code inside ePerl blocks. Using this option, the ePerl parser automatically converts all entities
found inside ePerl blocks back to plain CP−1252 characters, so the Perl interpreter again receives
valid code blocks.

−L This enables the line continuation character \ (backslash) outside ePerl blocks. With this option
you can spread one-line data over more lines. But use with care: This option changes your data
(outside ePerl blocks). Usually ePerl really pass through all surrounding data as raw data. With
this option the newlines have new semantics.

−T This enabled Perl’s Tainting mode where the Perl interpreter takes special precautions called "taint
checks" to prevent both obvious and subtle traps. See perlsec (1) for more details.

−w This enables Warnings where the Perl interpreter produces some lovely diagnostics. See
perldiag (1) for more details.

−c This only runs a syntax check, like perl −c.

−r This copies the ePerl README to STDOUT.

−l This copies the ePerl licences to STDOUT.

−v This shows ePerl version information to STDOUT.

ossp-eperl 2.2.15 2024-10-19 8

EPERL(1) Ralf S. Engelschall EPERL(1)

−V −v + shows the Perl compilation parameters.

ENVIRONMENT
Used Variables

PATH_TRANSLATED
This CGI/1.1 variable is used to determine the source file when ePerl operates as a NPH−CGI/1.1
program under the environment of a webserver.

Provided Variables

SCRIPT_SRC_PATH
The absolute pathname of the script. Use this when you want to directly access the script from
within itself, for instance to do stat (2) and other calls.

SCRIPT_SRC_PATH_DIR
The directory part of SCRIPT_SRC_PATH. Use this one when you want to directly access other
files residing in the same directory as the script, for instance to read config files, etc.

SCRIPT_SRC_PATH_FILE
The filename part of SCRIPT_SRC_PATH. Use this one when you need the basename of the
script, for instance for relative self-references through URLs.

SCRIPT_SRC_URL
The fully-qualified URL of the script.

SCRIPT_SRC_URL_DIR
The directory part of SCRIPT_SRC_URL.

SCRIPT_SRC_URL_FILE
The filename part of SCRIPT_SRC_URL. Same as SCRIPT_SRC_PATH_FILE, but provided
for consistency.

SCRIPT_SRC_SIZE
The filesize of the script, in bytes.

SCRIPT_SRC_MODIFIED
The last modification time of the script, in seconds since epoch.

SCRIPT_SRC_MODIFIED_CTIME
The last modification time of the script, in ctime (3) format (WDAY MMM DD HH:MM:SS YYYY).

SCRIPT_SRC_MODIFIED_ISOTIME
The last modification time of the script, in German format (DD-MM-YYYY HH:MM).

SCRIPT_SRC_OWNER
The username of the script owner or unknown−uid−123.

VERSION_INTERPRETER
The ePerl identification string.

VERSION_LANGUAGE
The identification string of the Perl interpreter.

Provided Built-In Images

The following built-in images can be accessed via URL /url/to/nph−eperl/NAME.gif:

logo.gif
The standard ePerl logo. Please do not include this one on your website.

powered.gif
The "powered by ePerl 2.2" logo. Feel free to use this on your website.

AUTHOR
Ralf S. Engelschall
rse@engelschall.com
www.engelschall.com

SEE ALSO
Parse::ePerl (3).

Web-References:

ossp-eperl 2.2.15 2024-10-19 9

EPERL(1) Ralf S. Engelschall EPERL(1)

Perl: perl(1), http://www.perl.com/
ePerl: eperl(1), http://sr.ht/˜nabijaczleweli/ossp
Apache: httpd(8), http://www.apache.org/

ossp-eperl 2.2.15 2024-10-19 10

ePerl(3pm) User Contributed Perl Documentation ePerl(3pm)

NAME
Parse::ePerl − Perl interface to the ePerl parser

SYNOPSIS
use Parse::ePerl;

$rc = Parse::ePerl::Preprocess($p);
$rc = Parse::ePerl::Translate($p);
$rc = Parse::ePerl::Precompile($p);
$rc = Parse::ePerl::Evaluate($p);
$rc = Parse::ePerl::Expand($p);

DESCRIPTION
Parse::ePerl is the Perl 5 interface package to the functionality of the ePerl parser (see eperl (1) for
more details about the stand-alone program). It directly uses the parser code from ePerl to translate a
sprinkled script into a plain Perl script and additionally provides functions to precompile such scripts
into P−code and evaluate those scripts to a buffer.

All functions are parameterized via a hash reference $p which provide the necessary parameters. The
result is a return code $rc which indicates success (1) or failure (0).

PREPROCESSOR: $rc = Parse::ePerl::Preprocess($p)

This is the ePerl preprocessor which expands #include directives. See eperl (1) for more details.

Possible parameters for $p:

Script

Scalar holding the input script in source format.

Result

Reference to scalar receiving the resulting script in sprinkled ePerl format.

BeginDelimiter

Scalar specifying the begin delimiter. Default is <:.

EndDelimiter

Scalar specifying the end delimiter. Default is :>.

INC

A reference to a list specifying include directories. Default is \@INC.

TRANSLATION: $rc = Parse::ePerl::Translate($p)

This is the actual ePerl parser, i.e. this function converts a sprinkled ePerl-style script (provided in
$p−{Script}> as a scalar) to a plain Perl script. The resulting script is stored into a buffer provided via
a scalar reference in $p−{Result}>. The translation is directly done by the original C function
Bristled2Plain() from ePerl, so the resulting script is exactly the same as with the stand-alone program
eperl.

Possible parameters for $p:

Script

Scalar holding the input script in sprinkled format.

Result

Reference to scalar receiving the resulting script in plain Perl format.

BeginDelimiter

Scalar specifying the begin delimiter. Default is <:.

EndDelimiter

Scalar specifying the end delimiter. Default is :>.

CaseDelimiters

Boolean flag indicating if the delimiters are case-sensitive (1=default) or case-insensitive (0).

Example: The following code

perl v5.40.0 2025-02-12 1

ePerl(3pm) User Contributed Perl Documentation ePerl(3pm)

$script = <<'EOT';
foo
<: print "bar"; :>
quux
EOT

Parse::ePerl::Translate({
Script => $script,
Result => \$script,

});

translates the script in $script to the following plain Perl format:

print "foo\n";
print "bar"; print "\n";
print "quux\n";

COMPILATION: $rc = Parse::ePerl::Precompile($p);

This is an optional step between translation and evaluation where the plain Perl script is compiled from
ASCII representation to P−code (the internal Perl bytecode). This step is used in rare cases only, for
instance from within for caching purposes.

Possible parameters for $p:

Script

Scalar holding the input script in plain Perl format, usually the result from a previous
Parse::ePerl::Translate (3) call.

Result

Reference to scalar receiving the resulting code reference. This code can be later directly used via
the &$var construct or given to the Parse::ePerl::Evaluate (3) function.

Error

Reference to scalar receiving possible error messages from the compilation (e.g. syntax errors).

Cwd

Directory to switch to while precompiling the script.

Name

Name of the script for informal references inside error messages.

Example: The following code

Parse::ePerl::Precompile({
Script => $script,
Result => \$script,

});

translates the plain Perl code (see above) in $script to a code reference and stores the reference
again in $script. The code later can be either directly used via &$script instead of
eval($script) or passed to the Parse::ePerl::Evaluate (3) function.

EVALUATION: $rc = Parse::ePerl::Evaluate($p);

Beside Parse::ePerl::Translate (3) this is the second main function of this package. It is intended to
evaluate the result of Parse::ePerl::Translate (3) in a ePerl-like environment, i.e. this function tries to
emulate the runtime environment and behavior of the program eperl. This actually means that it
changes the current working directory and evaluates the script while capturing data generated on
STDOUT/STDERR.

Possible parameters for $p:

Script

Scalar (standard case) or reference to scalar (compiled case) holding the input script in plain Perl
format or P−code, usually the result from a previous Parse::ePerl::Translate (3) or
Parse::ePerl::Precompile (3) call.

perl v5.40.0 2025-02-12 2

ePerl(3pm) User Contributed Perl Documentation ePerl(3pm)

Result

Reference to scalar receiving the resulting code reference.

Error

Reference to scalar receiving possible error messages from the evaluation (e.g. runtime errors).

ENV

Hash containing the environment for %ENV which should be used while evaluating the script.

Cwd

Directory to switch to while evaluating the script.

Name

Name of the script for informal references inside error messages.

Example: The following code

$script = <<'EOT';
print "foo\n";
print "bar"; print "\n";
print "quux\n";
EOT

Parse::ePerl::Evaluate({
Script => $script,
Result => \$script,

});

translates the script in $script to the following plain data:

foo
bar
quux

ONE-STEP EXPANSION: $rc = Parse::ePerl::Expand($p);

This function just combines, Parse::ePerl::Translate (3) and Parse::ePerl::Evaluate (3) into one step.
The parameters in $p are the union of the possible parameters for both functions. This is intended as a
high-level interface for Parse::ePerl.

AUTHOR
Ralf S. Engelschall
rse@engelschall.com
www.engelschall.com

SEE ALSO
eperl (1)

Web-References:

Perl: perl(1), http://www.perl.com/
ePerl: eperl(1), http://www.engelschall.com/sw/eperl/

perl v5.40.0 2025-02-12 3

